Multilane Traffic Density Estimation and Tracking
نویسندگان
چکیده
As the number of vehicles in roads increases, information of traffic density becomes crucial to municipalities for making better decisions about road management and to the environment for reduced carbon emission. Here, the problem of traffic density estimation is addressed when there is continuous influx of vehicle data. First the traffic density is modeled by the clusters of the speed groups that are centered after Kernel Density Estimation technique is implemented for the probability density function of the speed data. Then, empirical cumulative distribution function of data is found by Kolmogorov-Smirnov Test. A peak detection algorithm is used to estimate speed centers of the clusters. Since the estimation model has linear and non-linear components, the estimation of variance values and kernel weights are found by a nonlinear Least Square approach with separation of parameters property. Finally, the tracking of former and latter estimations of a road is calculated by using Scalar Kalman Filtering with scalar state scalar observation generality level. For all example data sets, the minimum mean square error of kernel weights is found to be less than 0.002 while error of mean values is found to be less than 0.261.
منابع مشابه
The Analyses and Applications of the Traffic Dispersion Model
In this study, we discuss the derivation, applications and the necessity of the traffic dispersion model, which is a nonlinear Poisson equation. Also, the analyses are presented in the content. The model is derived from the interaction among vehicles on a road. Therefore, the traffic pressure can be described by the model and the relation between density and the traffic pressure, which is trans...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملA Real Time Traffic Analysis System using Computer Vision
In this paper, a vision-based real-time traffic analysis system is presented, which can analyze vehicles in traffic from a traffic video sequence. This paper discusses object detection, and tracking of objects in multiple video frames. The functionalities of traffic analysis using computer vision include vehicle speed estimation, traffic flow direction estimation, traffic density estimation and...
متن کاملIdentification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection
The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017